

**TAS 201, TAS 202 AND TAS 203
TEST REPORT**

Rendered to:

FLEETWOOD WINDOWS & DOORS

**SERIES/MODEL: Kona 3800 Intersection TDL
PRODUCT TYPE: Fixed Window**

This report contains in its entirety:

**Cover Page: 1 page
Report Body: 14 pages
Test Equipment: 1 page
Sketches: 4 pages
Drawings: 3 pages**

Report No.: 94551.03-301-18

Test Dates: 11/10/09

Through: 06/19/10

Report Date: 07/01/10

Expiration Date: 06/19/20

TAS 201, TAS 202 AND TAS 203 TEST REPORT

Rendered to:

FLEETWOOD WINDOWS & DOORS
395 Smitty Way
Corona, California 92879

Report No.: 94551.03-301-18
Test Dates: 11/10/09
Through: 06/19/10
Report Date: 07/01/10
Expiration Date: 06/19/20

Project Summary: Architectural Testing, Inc. was contracted by Fleetwood Windows & Doors to perform testing per Florida Building Code, Test Protocols for High Velocity Hurricane Zone, Protocols TAS 201-94, TAS 202-94 and TAS 203-94 on three Series/Model Kona 3800 Intersecting TDL, three lite fixed windows. The samples tested met the performance requirements set forth in the protocols for a ± 50 psf *Design Pressure* rating. Test specimen description and results are reported herein. The samples were provided by the client.

Test Procedures: The test specimens were evaluated in accordance with the following:

TAS 201-94, *Impact Test Procedures*.

TAS 202-94, *Criteria for Testing Impact and Non Impact Resistant Building Envelope Components Using Uniform Static Air Pressure Loading*.

TAS 203-94, *Criteria for Testing Products Subject to Cyclic Wind Pressure Loading*.

Drawing Reference: The test specimen drawings have been reviewed and verified by Architectural Testing and are representative of the samples tested.

Test Specimen Description:

Series/Model: Kona 3800 Intersecting TDL

Product Type: Fixed Window

Overall Size: 3048 mm (120") wide by 3048 mm (120") high

Daylight Opening Size (4): 1454 mm (57-1/4") wide by 1454 mm (57-1/4")

Test Specimen Description: (Continued)

Screen Size: N/A

Finish: Anodized Aluminum

Glazing Details: The specimen utilized 1-1/4" thick insulating glass units fabricated from two 3/16" thick heat strengthened sheets, a 0.090" thick SentryGlas® Plus interlayer, a 5/8" airspace and one 3/16" thick heat strengthened sheet to the exterior. The glass was set from the exterior against a vinyl bulb gasket and Tremco silicone at the interior. An aluminum glazing stop and a vinyl bulb gasket was applied from the exterior. The glass bite was 1/2".

Weatherstripping: No weatherstripping was utilized.

Frame Construction: The vertical frame members corners were routed to fit the horizontal framing members and fully sealed with silicone. The frame corners were attached using three #10 x 1" stainless steel Phillips head screws. The intermediate vertical and horizontals were attached with two #10 x 1" stainless steel Phillips head screws at each end. All frame members were thermally improved with a poured-and-debrided thermal break.

Screen Construction: No screen was utilized.

Hardware: No hardware was utilized.

Drainage:

<u>Description</u>	<u>Quantity</u>	<u>Location</u>
1/2" by 1/4" weep slots	4	6" from all corners in the sill face
2" by 1/2" weep slots	4	6" from all sill corners in the glazing stop leg
1" weep notch	4	6" from corners in center leg of sill

Reinforcement: The intersection between the vertical (continuous) and horizontal members was reinforced with a 1/4" thick by 48" long aluminum bar. The vertical member had 2" deep reinforcement which was routed to accept the 1-1/2" deep horizontal reinforcement centered in the meeting point. Each reinforcement was secured to the member with sixteen #8 x 1/2" flat head Phillips screws. The fasteners in the vertical reinforcement were arranged in eight rows 1" apart, 1" from the intersection and spaced 12" apart. The fasteners in the horizontal reinforcement were arranged in eight rows 3/4" apart, 1" from the intersection and spaced 12" apart.

Test Specimen Description: (Continued)

Installation: The test specimens were installed into a nominal 2 x 8 Douglas Fir test buck. Eight #10 x 2" wood screws were located in each perimeter frame member located 6" from each corner and 16" on center.

Test Results: The following results have been recorded:

Protocol TAS 202-94, Static Air Pressure Tests

Test Unit #1

Design Pressure: ± 50.0 psf

Title of Test	Results
Air Infiltration	
1.57 psf (25 mph)	<0.01 cfm/ft ²
6.24 psf (50 mph)	0.01 cfm/ft ²
Structural Loads	Indicator Readings (inch)
50% of Test Pressure (+37.5 psf)	<hr/> <hr/> <hr/>
Maximum Deflection	#1 #2 #3
Permanent Set	0.10 0.88 0.08 0.04 0.17 0.03
Design Pressure (+50.0 psf)	
Maximum Deflection	0.13 1.28 0.11
Permanent Set	0.04 0.15 0.04
50% of Test Pressure (-37.5 psf)	
Maximum Deflection	0.21 0.99 0.24
Permanent Set	0.06 0.09 0.07
Design Pressure (-50.0 psf)	
Maximum Deflection	0.15 1.47 0.17
Permanent Set	0.06 0.20 0.07
Water Infiltration	
+12.0 psf	No Penetration
Test Pressure (+75.0 psf)	
Maximum Deflection	0.22 2.26 0.25
Permanent Set	0.04 0.22 0.02
Test Pressure (-75.0 psf)	
Maximum Deflection	0.20 2.12 0.14
Permanent Set	0.08 0.10 0.06

Note: See Architectural Testing Sketch #1 for indicator locations.

Test Results: (Continued)

Protocol TAS 201-94, Impact Test Procedures

Missile Weight: 9.0 lbs

Muzzle Distance from Test Specimen: 17 ft.

Test Unit #1

Impact #1: Missile Velocity: 15.0 m/s (49.1 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Center of lower right lite

Observations: Missile hit target area; no penetration

Results: Pass

Impact #2: Missile Velocity: 15.1 m/s (49.7 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Upper right corner of lower right lite

Observations: Missile hit target area; no penetration

Results: Pass

Impact #3: Missile Velocity: 15.2 m/s (49.8 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Lower left corner of lower left lite

Observations: Missile hit target area; no penetration

Results: Pass

Impact #4: Missile Velocity: 15.1 m/s (49.7 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Center of lower left lite

Observations: Missile hit target area; no penetration

Results: Pass

Test Results: (Continued)

Protocol TAS 201-94, Impact Test Procedures (Continued)

Test Unit #1 (Continued)

Impact #5: Missile Velocity: 15.0 m/s (49.1 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Upper right corner of upper right lite

Observations: Missile hit target area; no penetration

Results: Pass

Impact #6: Missile Velocity: 15.1 m/s (49.8 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Center of vertical/horizontal intersection

Observations: Missile hit target area; no penetration

Results: Pass

Impact #7: Missile Velocity: 15.0 m/s (49.3 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Center of glass of upper left lite

Observations: Missile hit target area; no penetration

Results: Pass

Impact #8: Missile Velocity: 15.0 m/s (49.2 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Lower right corner of upper left lite

Observations: Missile hit target area; no penetration

Results: Pass

Note: See Architectural Testing Sketch #2 for impact locations.

Test Results: (Continued)

Protocol TAS 203-94, Cyclic Wind Pressure Loading
Test Unit #1
Design Pressure: ± 50.0 psf

POSITIVE PRESSURE

Pressure Range (psf)	Number of Cycles	Average Cycle Time (seconds)	Maximum Deflection at Indicator (inch)		
			#1	#2	#3
10 to 25	3500	2.84	0.08	0.65	0.05
0 to 30	300	4.86	0.13	0.77	0.07
25 to 40	600	3.04	0.17	0.98	0.09
15 to 50	100	4.95	0.21	1.27	0.12
			Permanent Set (inch)		
			0.02	0.05	0.01

NEGATIVE PRESSURE

Pressure Range (psf)	Number of Cycles	Average Cycle Time (seconds)	Maximum Deflection at Indicator (inch)		
			#1	#2	#3
15 to 50	50	4.93	0.19	1.24	0.19
25 to 40	1050	2.71	0.15	1.01	0.17
0 to 30	50	4.82	0.14	0.81	0.15
10 to 25	3350	2.71	0.12	0.77	0.14
			Permanent Set (inch)		
			0.09	0.10	0.03

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

Test Results: (Continued)

Missile Weight: 9.0 lbs

Muzzle Distance from Test Specimen: 17 ft.

Test Unit #2

Impact #1: Missile Velocity: 15.1 m/s (49.6 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Lower left hand corner of lower right lite

Observations: Missile hit target area; no penetration

Results: Pass

Impact #2: Missile Velocity: 15.2 m/s (49.8 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Center of lower right lite

Observations: Missile hit target area; no penetration

Results: Pass

Note: See Architectural Testing Sketch #3 for impact locations.

Test Results: (Continued)

Protocol TAS 203-94, Cyclic Wind Pressure Loading
Test Unit #2
Design Pressure: ± 50.0 psf

POSITIVE PRESSURE

Pressure Range (psf)	Number of Cycles	Average Cycle Time (seconds)	Maximum Deflection at Indicator (inch)		
			#1	#2	#3
10 to 25	3500	2.67	0.09	0.54	0.03
0 to 30	300	4.23	0.12	0.65	0.04
25 to 40	600	3.09	0.18	0.91	0.06
15 to 50	100	4.29	0.22	1.17	0.09
			Permanent Set (inch)		
			0.05	0.02	0.01

NEGATIVE PRESSURE

Pressure Range (psf)	Number of Cycles	Average Cycle Time (seconds)	Maximum Deflection at Indicator (inch)		
			#1	#2	#3
15 to 50	50	4.55	0.17	1.22	0.15
25 to 40	1050	2.77	0.13	1.01	0.15
0 to 30	50	3.56	0.08	0.84	0.13
10 to 25	3350	2.33	0.07	0.83	0.13
			Permanent Set (inch)		
			0.06	0.04	0.03

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

Test Results: (Continued)

Missile Weight: 9.0 lbs

Muzzle Distance from Test Specimen: 17 ft.

Test Unit #3

Impact #1: Missile Velocity: 15.0 m/s (49.3 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Upper right corner of lower right light

Observations: Missile hit target area; no penetration

Results: Pass

Impact #2: Missile Velocity: 15.1 m/s (49.6 fps); orientation within $\pm 5^\circ$ of horizontal

Impact Area: Center of vertical/horizontal intersection

Observations: Missile hit target area; no penetration

Results: Pass

Note: See Architectural Testing Sketch #4 for impact locations

Test Results: (Continued)

Protocol TAS 203-94, Cyclic Wind Pressure Loading
Test Unit #3
Design Pressure: ± 50.0 psf

POSITIVE PRESSURE

Pressure Range (psf)	Number of Cycles	Average Cycle Time (seconds)	Maximum Deflection at Indicator (inch)		
			#1	#2	#3
10 to 25	3500	2.33	0.10	0.51	0.06
0 to 30	300	4.23	0.13	0.77	0.07
25 to 40	600	2.98	0.15	0.96	0.08
15 to 50	100	4.55	0.20	1.22	0.10
			Permanent Set (inch)		
			0.02	0.04	0.02

NEGATIVE PRESSURE

Pressure Range (psf)	Number of Cycles	Average Cycle Time (seconds)	Maximum Deflection at Indicator (inch)		
			#1	#2	#3
15 to 50	50	4.33	0.18	1.27	0.17
25 to 40	1050	2.65	0.15	1.04	0.15
0 to 30	50	4.77	0.13	0.91	0.13
10 to 25	3350	3.21	0.08	0.74	0.12
			Permanent Set (inch)		
			0.05	0.05	0.02

Result: Pass

Note: Refer to Architectural Testing Sketch #1 for indicator locations.

Test Equipment: (See Appendix A)

Cannon: Steel pipe barrel utilizing compressed air to propel the missile

Missile: 2x4 Southern Pine

Timing Device: Electronic Beam Type

Cycling Mechanism: Computer controlled centrifugal blower with electronic pressure measuring device

Deflection Measuring Device: Linear transducers

Laboratory Compliance Statements: The following are provided as required by the protocols for the testing reported herein.

Upon completion of testing, specimens tested for TAS 201-94 met the requirements of Section 1626 of the Florida Building Code.

Upon completion of testing, specimens tested for TAS 202-94 met the requirements of Section 1620 of the Florida Building Code.

Upon completion of testing, specimens tested for TAS 203-94 met the requirements of Section 1626 of the Florida Building Code.

Tape and film were used to seal against air leakage during structural testing. In our opinion, the tape and film did not influence the results of the test.

Testing was conducted at the Architectural Testing, Inc. laboratory located in Fresno, California.

List of Official Observers:

<u>Name</u>	<u>Company</u>
Dennis Janzen	Architectural Testing, Inc.
Mason Kelly	Architectural Testing, Inc.
Joseph A. Reed, P.E.	Architectural Testing, Inc.
Tyler Westerling, P.E.	Architectural Testing, Inc.

Detailed drawings, data sheets, representative samples of test specimens, a copy of this report, or other pertinent project documentation will be retained by Architectural Testing, Inc. for a period of ten years from the original test date. At the end of this retention period, such materials shall be discarded without notice and the service life of this report will expire.

Results obtained are tested values and were secured by using the designated test methods. This report does not constitute certification of this product nor an opinion or endorsement by this laboratory. It is the exclusive property of the client so named herein and relates only to the specimen tested. This report may not be reproduced, except in full, without the written approval of Architectural Testing, Inc.

For ARCHITECTURAL TESTING, INC.

Tyler Westerling, P.E.
Project Engineer

Joseph A. Reed, P.E.
Director - Engineering and Product Testing

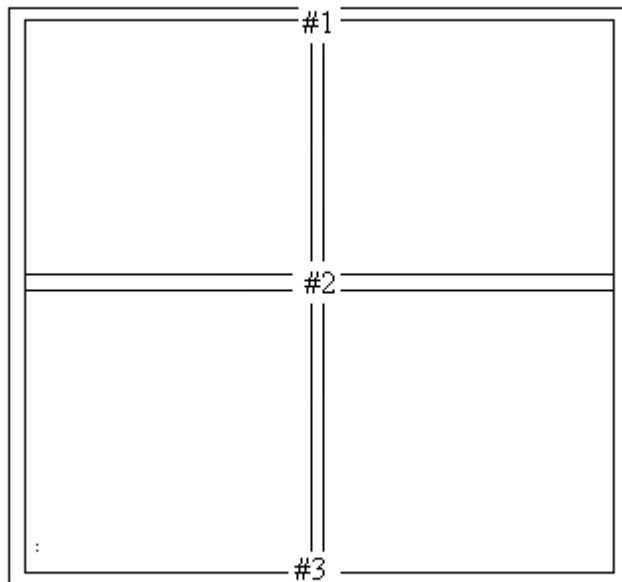
TW:cmd

Attachments (pages): This report is complete only when all attachments listed are included.

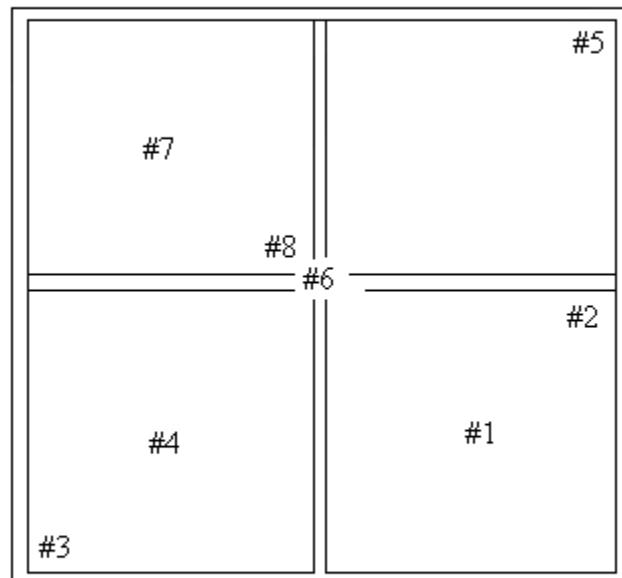
- Appendix-A: Test Equipment (1)
- Appendix-B: Sketches (4)
- Appendix-C: Drawings (3)

Revision Log

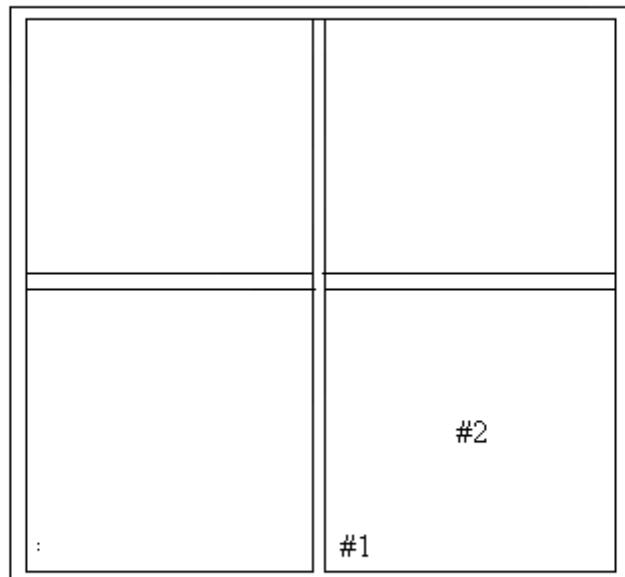
<u>Rev. #</u>	<u>Date</u>	<u>Page(s)</u>	<u>Revision(s)</u>
0	07/01/10	N/A	Original report issue

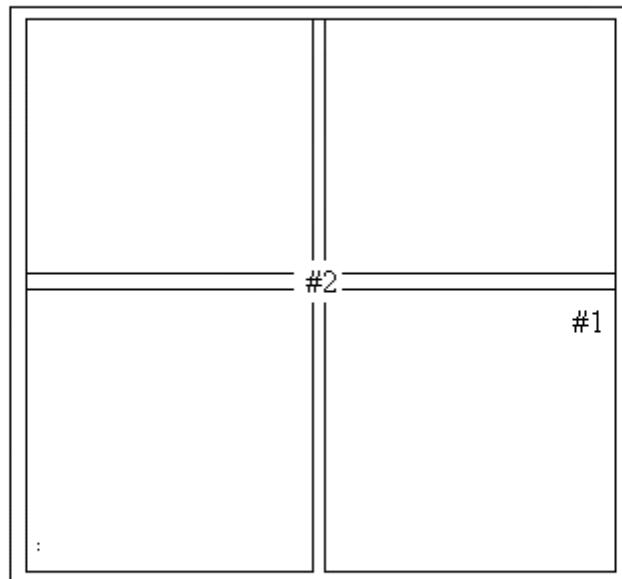

Appendix A

Test Equipment


Instrument	Manufacturer	Asset #
Control Panel	Architectural Testing, Inc.	005062
2 x 4 Cannon	Architectural Testing, Inc.	003575
Spray Rack	Architectural Testing, Inc.	Mockup
Operating Force Gauge	Chatillon	005554
Linear Transducer	Celesco	003431
Linear Transducer	Celesco	004485
Linear Transducer	Celesco	003428
Linear Transducer	Celesco	004486
Linear Transducer	Celesco	005283
Linear Transducer	Celesco	004487
Spring Scale	Pelouze	62406
Dial Indicator	Ames	003574

Appendix B


Sketches


Sketch #1 Linear Transducer Locations

Sketch #2 Impact Locations

Sketch #3 Specimen #2 Impact Locations

Sketch #4 Specimen #3 Impact Locations

Appendix C

Drawings

TABLE OF CONTENTS

SHEET DESCRIPTION
 1. GENERAL NOTES, DESIGN LOADS AND FRAME ANCHOR TABLE
 SPECIMEN 1 & 2 ELEVATION VIEW (OO & CO/CO)
 2. SPECIMEN 1 & 2 PLAN VIEW
 3. BILL OF MATERIALS SHEET

GENERAL NOTES

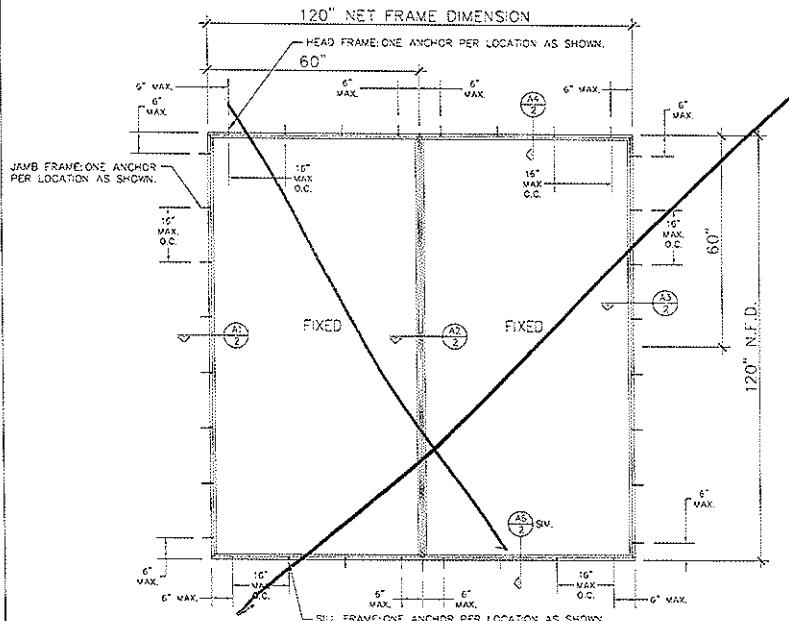
- THESE SYSTEMS HAVE BEEN TESTED, ANALYZED AND APPROVED FOR DESIGN PRESSURES NOT EXCEED THOSE SHOWN IN THE "ALLOWABLE DESIGN LOAD" TABLE.
- BUCKING OPENINGS & BUCKING FASTENERS MUST BE PROPERLY DESIGNED & INSTALLED TO TRANSFER LOADS TO THE STRUCTURE AND TO BE REVIEWED BY BUILDING OFFICIAL.
- ALL HARDWARE & FASTENERS SHALL BE IN ACCORDANCE WITH THESE DRAWINGS & MAY NOT VARY UNLESS SPECIFICALLY MENTIONED ON THE DRAWINGS.
- THE DETAILS & SPECIFICATIONS SHOWN HEREIN REPRESENT THE PRODUCTS TESTED & PROPOSED FOR WATER, AIR, IMPACT, CYCLIC & UNIFORM STATIC AIR PRESSURE TESTING IN CONFORMITY WITH AAMA AND FBC PROTOCOLS TAS 201, 202 & 203 FOR LARGE MISSILE IMPACT AND ASTM 1886/1996.
- THESE SYSTEMS HAVE BEEN DESIGNED IN ACCORDANCE WITH THE FLORIDA BUILDING CODE (FBC) INCLUDING HIGH VELOCITY HURRICANE ZONES (HVHZ).
- ALL ANCHORS SHALL BE INSTALLED AS SPECIFIED ON THESE DRAWINGS. SPECIFIED EMBEDMENT TO BASE MATERIAL SHALL BE BEYOND WALL FINISH OR STUCCO.
- MATERIALS, INCLUDING BUT NOT LIMITED TO STEEL SCREWS, THAT COME INTO CONTACT WITH OTHER DISSIMILAR MATERIALS SHALL MEET THE REQUIREMENTS OF AAMA AND FLORIDA BUILDING CODE.

GLAZING TYPES	
CA: 1": (SMM-ANNEALED, 0.625 IN, SMM-ANNEALED)	ASTM 1886/1996 TAS 201, 202,203 LARGE MISSILE IMPACT AND CYCLIC WIND LOADING NO
CA: 1-1/4" INSULATING LAMINATED GLASS COMPRISED OF: 6MM TEMPERED - 5/8" AIRSPACE - 5MM HEAT STRENGTHENED - 90 MIL SENTRY GLASS [®] - 5MM HEAT STRENGTHENED	YES

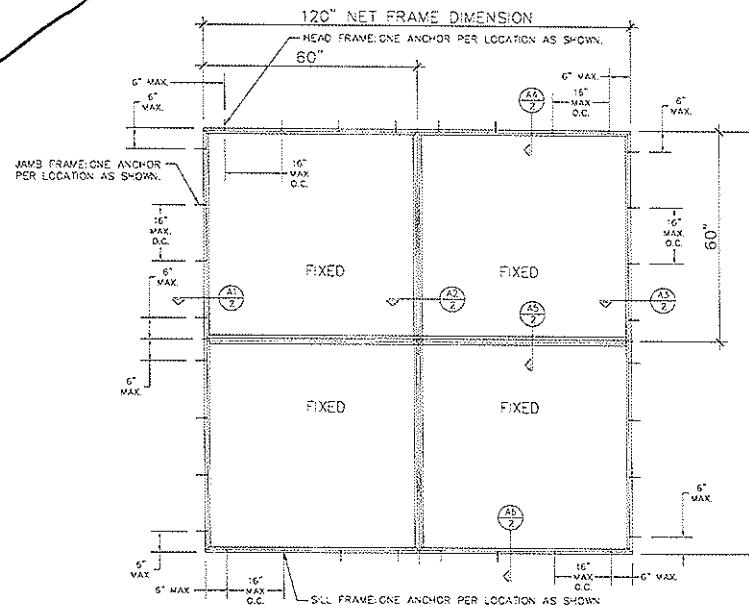
ALLOWABLE DESIGN LOAD	
MAXIMUM DESIGN PRESSURE:	-50 PSF
MAXIMUM FRAME SIZE WITH TDL BARS:	120" X 120"
MAXIMUM FRAME SIZE WITHOUT TDL BARS:	120" X 60"
MAXIMUM TDL BAR LENGTH:	120"
MAXIMUM GLAZING SIZE WITH NON-INTERSECTING TDL BARS:	120" X 60"
WITH INTERSECTING TDL BARS:	60" X 60"

FRAME ANCHOR REQUIREMENTS TABLE			
OPENING TYPE (SUBSTRATE)	FRAME TO OPENING FASTENER TYPE	MINIMUM EMBEDMENT	MINIMUM EDGE DIST.
2X WOOD FRAME OR BUCK	(#10, 10 SMS SCREW)	1 1/2"	3/4"
MIN. 18 GA. 33 KSI STEEL STUD	(#10, 10 SMS SCREW)	FULL	3/8"
CMU/CONCRETE	(#23/16" CONCRETE SCREWS)	1 1/2"	2 5/8"

①SMS SCREWS GRADE 5
②CONCRETE SCREWS SHALL BE 3/16" ITW TAPCON OR EQUIVALENT

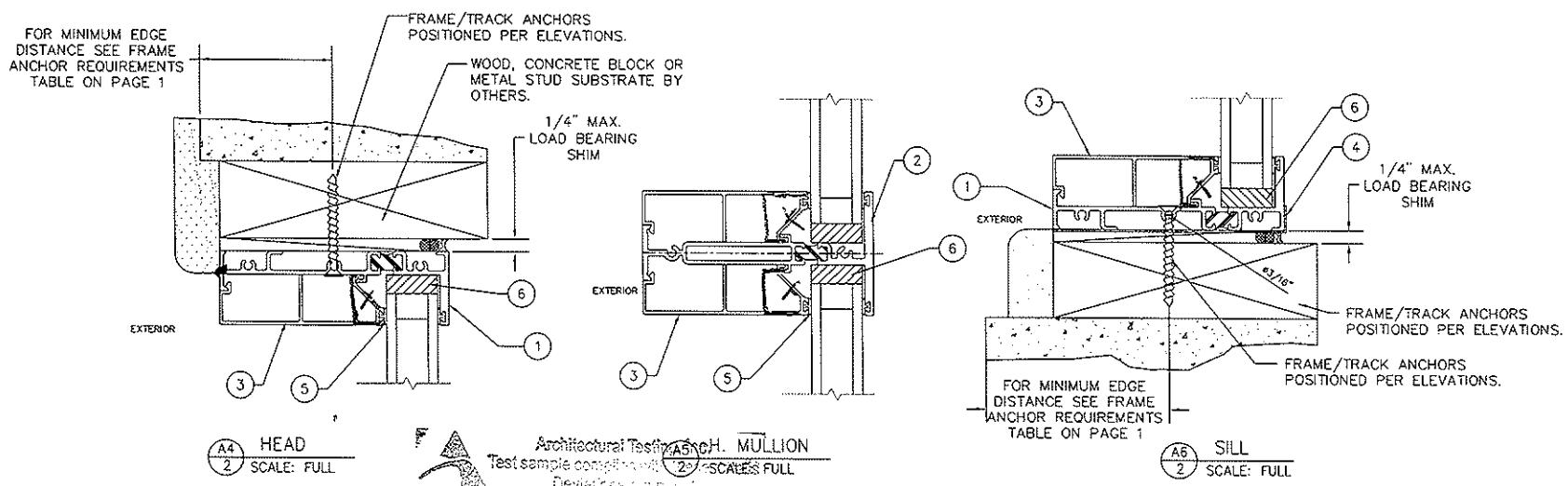
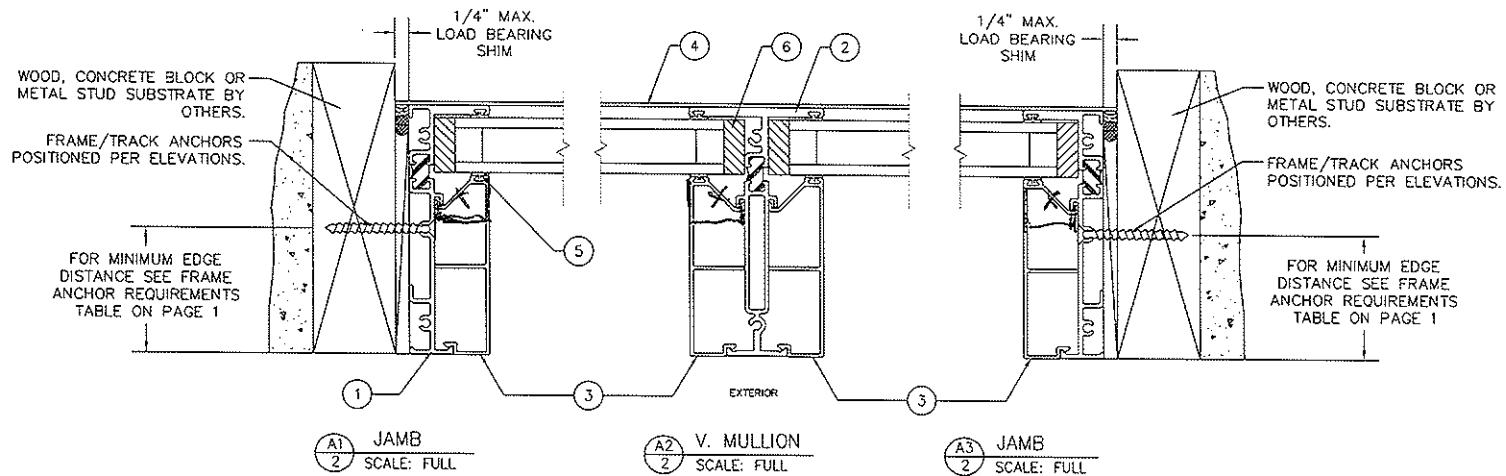

Architectural Testing, Inc.
Test sample complies with these details
Deviations are noted

94550 JAN 05 2010


Report

Date

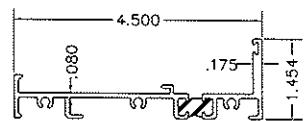
Tech

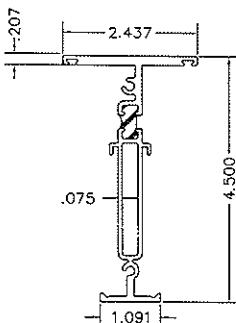
SPECIMEN 1: VERTICAL TDL

SPECIMEN 2: INTERSECTING TDL

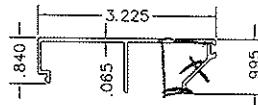
REVISIONS	DATE	REVISIONS	DATE
0	08/17/2009	0	08/17/2009
DRAWN BY: KEVIN		DRAWN BY: JOHN	
TITLE: KONA 3000 AAMA, FBC, ASTM 1886/1996		TITLE: KONA 3000 AAMA, FBC, ASTM 1886/1996	
CUSTOMER: FLEETWOOD WINDOWS AND DOORS		CUSTOMER: FLEETWOOD WINDOWS AND DOORS	
LOCATION: KONA, HAWAII CERTIFICATION		LOCATION: KONA, HAWAII CERTIFICATION	
SCALE: 1:16		SCALE: 1:16	
DRAWING NO. CERT-3806-09		DRAWING NO. CERT-3806-09	
SHEET 1		SHEET 1	
VALIDATOR INITIAL		VALIDATOR INITIAL	

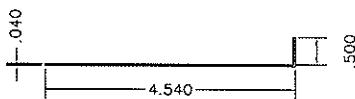

9 4550 1990-01-22

Report of

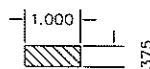

二二

VALIDATOR INITIAL


FLEETWOOD WINDOWS AND DOORS 385 STREET AVE CORONA, CALIFORNIA 92880 www.fleetwood.com		DRAWING NO. CERT-8000-09	
		1	1
 SCALE 1:1		SHEET 1 OF 3	
TITLE: KONA 850 - JAVA, FIB. C. STW 840 - 1996 CIRCUIT BOARD		DRAWN BY: COVINGTON	DATE: 01/07/10/00
CATEGORY: FLEETWOOD JAVA, FIB. C. STW 840 - 1996 CIRCUIT BOARD		DESIGNER: REWIA	REVIEWED BY: [Signature]
SUB-NAME: KONA 850 CERTIFICATION		APPROVED BY: [Signature]	RE-APPROVED BY: [Signature]
REVISIONS: 23303		COMMENTS: [Large empty box for notes]	


① SILL, HEAD & JAMB

② MULLION


③ GLASS STOP

④ SILL PAN

⑤ SANOPRENE BULB

⑥ EDGE BLOCK

Architectural Testing, Inc.
Test sample complies with these details
Deviations are listed

94550

JAN 05 2010

Report

Date

Tech

ITEM #	PART	ITEM DESCRIPTION
EXTRUSIONS		
1	3805	SILL, HEAD JAMB
2	3806	MULLION
3	3801	GLASS STOP
4	3822	SILL PAN
5	OVP04	SANOPRENE BULB
6	FW-1006	EDGE BLOCK

FLEETWOOD		WINDOWS AND DOORS	
325 SHIFTY AVE CARMEL CALIFORNIA 93723-2900			
SCALE: 1:1		DRAWING NO. 4 CERT 3800-09	
VALIDATOR INITIAL		SHEET # 3 OF 3	
KODA 3800-AANA-FRIC ASTM 1480/15W CERTIFICATION			
DRAWN BY KEVIN 06/17/09		CHECKED BY JOHN FARNERES 253956	
REVISIONS		COMMENTS	
TITLE: KODA 3800-AANA-FRIC ASTM 1480/15W CERTIFICATION CUSTOMER: FLEETWOOD WINDOWS AND DOORS JOB NAME: KODA 3800-CERTIFICATION			